OFFSET
1,2
COMMENTS
The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies.
LINKS
Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
Index entries for linear recurrences with constant coefficients, signature (32,-275,724,-480).
FORMULA
a(n) = (32/85)*20^n - (4/5)*8^n + (648/85)*3^n - 24.
a(n) = 20*a(n-1) + (6/5)*8^n - (216/5)*3^n + 456.
G.f.: 12*x^2*(7 - 224*x + 1865*x^2 - 4308*x^3)/(5*(1 - x)*(1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - Stefano Spezia, Nov 28 2023
EXAMPLE
The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices. Thus a(1) = 0.
MATHEMATICA
LinearRecurrence[{32, -275, 724, -480}, {0, 144, 2784, 57552}, 25] (* Paolo Xausa, Nov 29 2023 *)
PROG
(Python)
def A367702(n): return ((5**n<<(n<<1)+5)-(17<<(3*n+2))+(3**(n+4)<<3))//85-24 # Chai Wah Wu, Nov 28 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Allan Bickle, Nov 27 2023
STATUS
approved