login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367559
Square array T(n, k) = 2^k - n, read by ascending antidiagonals.
3
1, 0, 2, -1, 1, 4, -2, 0, 3, 8, -3, -1, 2, 7, 16, -4, -2, 1, 6, 15, 32, -5, -3, 0, 5, 14, 31, 64, -6, -4, -1, 4, 13, 30, 63, 128, -7, -5, -2, 3, 12, 29, 62, 127, 256, -8, -6, -3, 2, 11, 28, 61, 126, 255, 512, -9, -7, -4, 1, 10, 27, 60, 125, 254, 511, 1024
OFFSET
0,3
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11475 (antidiagonals 0..150, flattened).
FORMULA
G.f. of row n: 1/(1-2*x) - n/(1-x).
E.g.f. of row n: exp(2*x) - n*exp(x).
T(0, k) = 2^k = A000079(k).
T(1, k) = 2^k - 1 = A000225(k).
T(2, k) = 2^k - 2 = A000918(k).
T(3, k) = 2^k - 3 = A036563(k).
T(5, k) = 2^k - 5 = A168616(k).
T(9, k) = 2^k - 9 = A185346(k).
T(10, k) = 2^k - 10 = A246168(k).
T(n, k) = 3*T(n, k-1) - 2*T(n, k-2) for k > 1.
T(n+1, k) = T(n, k) + 1.
T(n, n) = 2^n - n = A000325(n).
Sum_{k = 0..n} T(n - k, k) = A084634(n).
a(n) = 2^A002262(n) - A025581(n).
G.f.: (1 - 2*x - y + 3*x*y)/((1 - x)^2*(1 - y)*(1 - 2*y)). - Stefano Spezia, Nov 27 2023
EXAMPLE
This sequence as square array T(n, k):
n\k 0 1 2 3 4 5 6 7 8 9 10.
---------------------------------------------------------.
0 : 1 2 4 8 16 32 64 128 256 512 1024.
1 : 0 1 3 7 15 31 63 127 255 511 1023.
2 : -1 0 2 6 14 30 62 126 254 510 1022.
3 : -2 -1 1 5 13 29 61 125 253 509 1021.
4 : -3 -2 0 4 12 28 60 124 252 508 1020.
5 : -4 -3 -1 3 11 27 59 123 251 507 1019.
6 : -5 -4 -2 2 10 26 58 122 250 506 1018.
7 : -6 -5 -3 1 9 25 57 121 249 505 1017.
8 : -7 -6 -4 0 8 24 56 120 248 504 1016.
9 : -8 -7 -5 -1 7 23 55 119 247 503 1015.
10: -9 -8 -6 -2 6 22 54 118 246 502 1014.
MATHEMATICA
Table[2^k-n+k, {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Nov 28 2023 *)
PROG
(PARI) T(n, k) = 2^k-n \\ Thomas Scheuerle, Nov 23 2023
KEYWORD
easy,sign,tabl
AUTHOR
Paul Curtz, Nov 22 2023
STATUS
approved