OFFSET
0,4
COMMENTS
In an Euler-Seidel matrix, the rows are consecutive pairwise sums and the columns consecutive differences, with the first column the inverse binomial transform of the start sequence.
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
D. Dumont, Matrices d'Euler-Seidel, Sem. Loth. Comb. B05c (1981) 59-78.
FORMULA
Recurrence: T(0, 2n) = (2n-1)!!, T(0, 2n+1) = 0, T(k, n) = T(k-1, n) + T(k-1, n+1).
EXAMPLE
1, 0, 1, 0, 3, 0, 15, ...
1, 1, 1, 3, 3, 15, 15, ...
2, 2, 4, 6, 18, 30, 120, ...
4, 6, 10, 24, 48, 150, 330, ...
10, 16, 34, 72, 198, 480, 1590, ...
MAPLE
T:= proc(k, n) option remember; `if`(k=0, `if`(irem(n, 2)=0,
doublefactorial(n-1), 0), T(k-1, n) +T(k-1, n+1))
end:
seq(seq(T(d-n, n), n=0..d), d=0..14); # Alois P. Heinz, Oct 14 2012
MATHEMATICA
t[0, n_?EvenQ] := (n-1)!!; t[0, n_?OddQ] := 0; t[k_, n_] := t[k, n] = t[k-1, n] + t[k-1, n+1]; Table[t[k-n, n], {k, 0, 10}, {n, 0, k}] // Flatten (* Jean-François Alcover, Dec 10 2012 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Sep 23 2004
STATUS
approved