login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366992
The sum of divisors of n that are not terms of A322448.
4
1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 15, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 47, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 60, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 47, 84, 144
OFFSET
1,2
COMMENTS
First differs from A365682 at n = 64.
The sum of divisors of n whose prime factorization has exponents that are all either 1 or primes.
The number of these divisors is A366991(n) and the largest of them is A366994(n).
LINKS
FORMULA
Multiplicative with a(p^e) = 1 + p + Sum_{primes q <= e} p^q.
a(n) <= A000203(n), with equality if and only if n is a biquadratefree number (A046100).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} f(1/p) = 0.77864544487983775708..., where f(x) = (1-x) * (1 + Sum_{k>=1} (1 + 1/x + Sum_{primes q <= k} 1/x^q) * x^(2*k)).
MATHEMATICA
f[p_, e_] := 1 + p + Total[p^Select[Range[e], PrimeQ]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1] + sum(j = 1, f[i, 2], if(isprime(j), f[i, 1]^j))); }
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Oct 31 2023
STATUS
approved