The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322448 Numbers whose prime factorization contains at least one composite exponent. 3
 16, 48, 64, 80, 81, 112, 144, 162, 176, 192, 208, 240, 256, 272, 304, 320, 324, 336, 368, 400, 405, 432, 448, 464, 496, 512, 528, 560, 567, 576, 592, 624, 625, 648, 656, 688, 704, 720, 729, 752, 768, 784, 810, 816, 832, 848, 880, 891, 912, 944, 960, 976, 1008 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The asymptotic density of this sequence is Product_{p prime} (1 - 1/p^4 + Sum_{q prime >= 5} 1/p^q - 1/p^(q-1)) = 0.05328066264472198953... (using the method of Shevelev, 2016). - Amiram Eldar, Nov 08 2020 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..10000 Vladimir Shevelev, A fast computation of density of exponentially S-numbers, arXiv:1602.04244 [math.NT], 2016. EXAMPLE 16 = 2^4 is a term because 4 is a composite exponent here. MAPLE a:= proc(n) option remember; local k; for k from 1+       `if`(n=1, 0, a(n-1)) while andmap(i-> i[2]=1 or        isprime(i[2]), ifactors(k)[2]) do od; k     end: seq(a(n), n=1..70); MATHEMATICA Select[Range[1000], AnyTrue[FactorInteger[#][[;; , 2]], CompositeQ] &] (* Amiram Eldar, Nov 08 2020 *) PROG (PARI) isok(m) = #select(x->((x>1) && !isprime(x)), factor(m)[, 2]) > 0; \\ Michel Marcus, Dec 02 2020 CROSSREFS Cf. A002808, A322449. Sequence in context: A223440 A223402 A260985 * A264164 A045047 A239344 Adjacent sequences:  A322445 A322446 A322447 * A322449 A322450 A322451 KEYWORD nonn AUTHOR Alois P. Heinz, Dec 08 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 12:04 EDT 2021. Contains 345025 sequences. (Running on oeis4.)