login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260985
Numbers k such that A001222(k) - A001221(k) is an odd prime.
1
16, 48, 64, 72, 80, 81, 108, 112, 162, 176, 192, 200, 208, 240, 256, 272, 288, 304, 320, 336, 360, 368, 392, 405, 432, 448, 464, 496, 500, 504, 528, 540, 560, 567, 592, 600, 624, 625, 648, 656, 675, 688, 704, 729, 752, 756, 768, 792, 800, 810, 816, 832, 848
OFFSET
1,1
COMMENTS
The asymptotic density of this sequence is (6/Pi^2) * Sum_{k>=1} f(a(k)) = 0.0626525..., where f(k) = A112526(k) * Product_{p|k} p/(p+1). - Amiram Eldar, Sep 24 2024
EXAMPLE
16 is in the sequence because A001222(16) - A001221(16) = 3.
80 is in the sequence because A001222(80) - A001221(80) = 3.
192 is in the sequence because A001222(192) - A001221(192) = 5.
MATHEMATICA
Select[Range[10^3], !PrimeQ[#] && PrimeQ[p = PrimeOmega[#] - PrimeNu[#]] && OddQ[p] &]
PROG
(PARI) isok(n) = (d=bigomega(n)-omega(n)) && (d != 2) && isprime(d); \\ Michel Marcus, Aug 07 2015
(Python)
from sympy import isprime, primefactors
def omega(n): return 0 if n==1 else len(primefactors(n))
def bigomega(n): return 0 if n==1 else bigomega(n//min(primefactors(n))) + 1
def ok(n):
d = bigomega(n) - omega(n)
return d%2 and isprime(d)
print([n for n in range(1, 1001) if ok(n)]) # Indranil Ghosh, Apr 25 2017
CROSSREFS
Subsequence of A013929.
Subsequences: A195087, A195089, A195091.
Sequence in context: A223440 A223402 A373286 * A322448 A374588 A354181
KEYWORD
nonn,easy
AUTHOR
STATUS
approved