login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366919
a(n) = Sum_{k=1..n} (-1)^k*k^n*floor(n/k).
2
-1, 2, -22, 203, -2285, 33855, -609345, 12420372, -284964519, 7347342215, -209807114169, 6554034238459, -222469737401739, 8159109186320903, -321461264348047819, 13538455640979049698, -606976994365011212414, 28864017965496692865925, -1451086990386146504580735
OFFSET
1,2
FORMULA
a(n) = (-1)^n*A308313(n).
Let A(n,k) = Sum_{j=1..n} j^k * floor(n/j). Then a(n) = 2^(n+1)*A(floor(n/2),n)-A(n,n).
MATHEMATICA
a[n_]:=Sum[ (-1)^k*k^n*Floor[n/k], {k, n}]; Array[a, 19] (* Stefano Spezia, Oct 29 2023 *)
PROG
(Python)
from math import isqrt
from sympy import bernoulli
def A366919(n): return ((((s:=isqrt(m:=n>>1))+1)*(bernoulli(n+1)-bernoulli(n+1, s+1))<<n+1)-((t:=isqrt(n))+1)*(bernoulli(n+1)-bernoulli(n+1, t+1))+(sum(w**n*(n+1)*((q:=m//w)+1)-bernoulli(n+1)+bernoulli(n+1, q+1) for w in range(1, s+1))<<n+1)-sum(w**n*(n+1)*((q:=n//w)+1)-bernoulli(n+1)+bernoulli(n+1, q+1) for w in range(1, t+1)))//(n+1)
(PARI) a(n) = sum(k=1, n, (-1)^k*k^n*(n\k)); \\ Michel Marcus, Oct 29 2023
CROSSREFS
KEYWORD
sign
AUTHOR
Chai Wah Wu, Oct 28 2023
STATUS
approved