login
A359856
Number of permutations of [1..n] which are indecomposable by direct and skew sums.
1
1, 1, 0, 0, 2, 22, 202, 1854, 17866, 183806, 2029850, 24081006, 306486314, 4175102110, 60708557626, 939518187726, 15430666746826, 268214861561726, 4921023843969242, 95066628485598126, 1929291834938927210, 41042364285004263262, 913409469123533445754, 21227246586149632119438
OFFSET
0,5
FORMULA
G.f.: 2*(2 - 1/F(x)) - F(x) where F(x) = Sum_{k>=0} k!*x^k.
G.f.: S(F(x)) - 2*F(x)^2 - F(x) + x + 1 where S(x) is the g.f. of A111111 and F(x) = Sum_{k>=1} k!*x^k.
a(n) ~ n! * (1 - 4/n - 2/n^2 - 10/n^3 - 64/n^4 - 506/n^5 - 4762/n^6 - 51824/n^7 - 638678/n^8 - 8777898/n^9 - 132990772/n^10 - ...). - Vaclav Kotesovec, Jan 19 2023
EXAMPLE
The only permutations of [1..4] which are indecomposable by direct and skew sums are 2413 and 3142.
MATHEMATICA
nmax = 20; CoefficientList[Series[2*(2 - 1/Sum[k!*x^k, {k, 0, nmax}]) - Sum[k!*x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 19 2023 *)
PROG
(PARI) seq(n)={my(p=sum(k=0, n, k!*x^k, O(x*x^n))); Vec(2*(2 - 1/p) - p)} \\ Andrew Howroyd, Jan 16 2023
CROSSREFS
Sequence in context: A043037 A058441 A255043 * A366919 A308313 A304024
KEYWORD
nonn
AUTHOR
Ludovic Schwob, Jan 16 2023
STATUS
approved