Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Oct 29 2023 22:05:59
%S -1,2,-22,203,-2285,33855,-609345,12420372,-284964519,7347342215,
%T -209807114169,6554034238459,-222469737401739,8159109186320903,
%U -321461264348047819,13538455640979049698,-606976994365011212414,28864017965496692865925,-1451086990386146504580735
%N a(n) = Sum_{k=1..n} (-1)^k*k^n*floor(n/k).
%F a(n) = (-1)^n*A308313(n).
%F Let A(n,k) = Sum_{j=1..n} j^k * floor(n/j). Then a(n) = 2^(n+1)*A(floor(n/2),n)-A(n,n).
%t a[n_]:=Sum[ (-1)^k*k^n*Floor[n/k],{k,n}]; Array[a,19] (* _Stefano Spezia_, Oct 29 2023 *)
%o (Python)
%o from math import isqrt
%o from sympy import bernoulli
%o def A366919(n): return ((((s:=isqrt(m:=n>>1))+1)*(bernoulli(n+1)-bernoulli(n+1,s+1))<<n+1)-((t:=isqrt(n))+1)*(bernoulli(n+1)-bernoulli(n+1,t+1))+(sum(w**n*(n+1)*((q:=m//w)+1)-bernoulli(n+1)+bernoulli(n+1,q+1) for w in range(1,s+1))<<n+1)-sum(w**n*(n+1)*((q:=n//w)+1)-bernoulli(n+1)+bernoulli(n+1,q+1) for w in range(1,t+1)))//(n+1)
%o (PARI) a(n) = sum(k=1, n, (-1)^k*k^n*(n\k)); \\ _Michel Marcus_, Oct 29 2023
%Y Cf. A024919, A308313, A366915, A366917, A319649.
%K sign
%O 1,2
%A _Chai Wah Wu_, Oct 28 2023