login
A366698
G.f. satisfies A(x) = (1 + x)^2 + x*A(x)^4.
2
1, 3, 13, 106, 1000, 10315, 112732, 1282262, 15021212, 179994093, 2195807684, 27179964798, 340514877488, 4309512389582, 55014793453124, 707582318505678, 9160219144520568, 119268621622902920, 1560830776582842660, 20519083242145870778, 270851956372499374728
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(2*(3*k+1),n-k) * binomial(4*k,k)/(3*k+1).
PROG
(PARI) a(n) = sum(k=0, n, binomial(2*(3*k+1), n-k)*binomial(4*k, k)/(3*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 16 2023
STATUS
approved