login
A366695
G.f. satisfies A(x) = (1 + x)^3 + x*A(x)^2.
1
1, 4, 11, 39, 166, 765, 3716, 18725, 96956, 512690, 2756806, 15027651, 82853678, 461215414, 2588619402, 14632777719, 83232244238, 476040155118, 2736005962314, 15793863291792, 91530881427964, 532343678619778, 3106141476531628, 18177446846299299
OFFSET
0,2
FORMULA
G.f.: A(x) = 2*(1+x)^3 / (1+sqrt(1-4*x*(1+x)^3)).
a(n) = Sum_{k=0..n} binomial(3*(k+1),n-k) * binomial(2*k,k)/(k+1).
PROG
(PARI) a(n) = sum(k=0, n, binomial(3*(k+1), n-k)*binomial(2*k, k)/(k+1));
CROSSREFS
Cf. A162481.
Sequence in context: A126758 A149258 A326423 * A149259 A050911 A149260
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 16 2023
STATUS
approved