login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A366384
Lexicographically earliest infinite sequence such that a(i) = a(j) => A355828(i) = A355828(j) for all i, j >= 1, where A355828 is Dirichlet inverse of A342671, the greatest common divisor of sigma(n) and A003961(n).
1
1, 2, 3, 4, 3, 5, 3, 6, 7, 5, 3, 8, 3, 5, 1, 9, 3, 7, 3, 10, 1, 5, 3, 11, 7, 5, 12, 8, 3, 2, 3, 13, 1, 5, 1, 7, 3, 5, 1, 14, 3, 2, 3, 15, 7, 5, 3, 7, 7, 7, 1, 8, 3, 11, 1, 16, 2, 5, 3, 17, 3, 5, 7, 18, 19, 2, 3, 20, 1, 2, 3, 11, 3, 5, 7, 8, 1, 2, 3, 21, 4, 5, 3, 4, 1, 5, 2, 22, 3, 7, 1, 15, 1, 5, 1, 23, 3, 7, 24
OFFSET
1,2
LINKS
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A342671(n) = gcd(sigma(n), A003961(n));
v366384 = rgs_transform(DirInverseCorrect(vector(up_to, n, A342671(n))));
A366384(n) = v366384[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 12 2023
STATUS
approved