login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366291
Lexicographically earliest infinite sequence such that a(i) = a(j) => A353271(i) = A353271(j) for all i, j >= 1, where A353271(n) is the numerator of n / A005940(1+(3*A156552(n))).
1
1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 2, 7, 10, 1, 4, 5, 11, 9, 2, 1, 12, 1, 13, 10, 14, 7, 15, 1, 16, 11, 4, 1, 7, 1, 2, 12, 17, 1, 8, 7, 18, 14, 2, 1, 9, 10, 4, 16, 19, 1, 20, 1, 21, 3, 22, 11, 23, 1, 2, 17, 24, 1, 25, 1, 26, 18, 2, 10, 27, 1, 8, 28, 29, 1, 30, 14, 31, 19, 4, 1, 32, 11, 2, 21, 33, 16
OFFSET
1,4
COMMENTS
Restricted growth sequence transform of A353271.
For all i, j: A305800(i) = A305800(j) => a(i) = a(j).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
(PARI)
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
A332449(n) = A005940(1+(3*A156552(n)));
A353271(n) = (n / gcd(n, A332449(n)));
v366291 = rgs_transform(vector(up_to, n, A353271(n)));
A366291(n) = v366291[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 06 2023
STATUS
approved