login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079880
a(n) = n/mpf(n), where mpf(n) is the median prime factor of n (A079879).
2
1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 6, 1, 10, 7, 11, 1, 12, 5, 13, 9, 14, 1, 10, 1, 16, 11, 17, 7, 18, 1, 19, 13, 20, 1, 14, 1, 22, 15, 23, 1, 24, 7, 10, 17, 26, 1, 18, 11, 28, 19, 29, 1, 30, 1, 31, 21, 32, 13, 22, 1, 34, 23, 14, 1, 36, 1, 37, 15, 38, 11, 26, 1, 40, 27, 41, 1, 42
OFFSET
1,4
COMMENTS
A052126(n)<=a(n)<=A032742(n);
a(m)=A032742(m)=A052126(m) iff m is a prime power (A000961).
LINKS
MAPLE
f:= proc(n) local F, F2, m, i;
F:= sort(ifactors(n)[2], (i, j) -> i[1]<j[1]);
F2:= ListTools:-PartialSums(map2(op, 2, F));
for i from 1 do
if 2*F2[i]>=F2[-1] then return n/F[i][1] fi
od
end proc:
1, seq(f(n), n=2..100); # Robert Israel, Jan 26 2018
MATHEMATICA
mpf[n_] := Module[{fi = FactorInteger[n], ff, Om}, ff = Flatten[Table[ Table[f[[1]], {f[[2]]}], {f, fi}]]; Om = Length[ff]; If[OddQ[Om], ff[[Floor[Om/2]+1]], ff[[Om/2]]]];
a[n_] := n/mpf[n];
Array[a, 100] (* Jean-François Alcover, Mar 09 2019 *)
CROSSREFS
a(n)=n/A079879(n), A033676.
Sequence in context: A079554 A247892 A366649 * A366291 A353271 A326139
KEYWORD
nonn,look
AUTHOR
Reinhard Zumkeller, Jan 13 2003
STATUS
approved