login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079879
Median prime factor: a(1)=1 and for n>1: least prime p such that not more than floor(Omega(n)/2) prime factors are greater than p; Omega(n) is the total number of prime factors of n (A001222).
7
1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 3, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 3, 31, 2, 3, 2, 5, 2, 37, 2, 3, 2, 41, 3, 43, 2, 3, 2, 47, 2, 7, 5, 3, 2, 53, 3, 5, 2, 3, 2, 59, 2, 61, 2, 3, 2, 5, 3, 67, 2, 3, 5, 71, 2, 73, 2, 5, 2, 7, 3, 79, 2, 3, 2, 83, 2, 5, 2, 3, 2, 89, 3, 7, 2, 3, 2, 5, 2
OFFSET
1,2
LINKS
Jean-Marie De Koninck and Florian Luca, On the Middle Prime Factor of an Integer, Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.5.
Nicolas Doyon and Vincent Ouellet, On the sum of the reciprocals of the middle prime factor counting multiplicity, Annales Univ. Sci. Budapest., Sect. Comp. 47 (2018) 249-259.
FORMULA
A020639(n) <= a(n) <= A006530(n);
a(m) = A020639(m) = A006530(m) iff m is a prime power (A000961).
EXAMPLE
a(30)=a(2*3*5)=3; a(60)=a(2*2*3*5)=2; a(72)=a(2*2*2*3*3)=2; a(90)=a(2*3*3*5)=3; a(108)=a(2*2*3*3*3)=3; a(144)=a(2*2*2*2*3*3)=2; a(216)=a(2*2*2*3*3*3)=2.
MAPLE
f:= proc(n) local F, F2, m, i;
F:= sort(ifactors(n)[2], (i, j) -> i[1]<j[1]);
F2:= ListTools:-PartialSums(map2(op, 2, F));
for i from 1 do
if 2*F2[i]>=F2[-1] then return F[i][1] fi
od
end proc:
1, seq(f(n), n=2..100); # Robert Israel, Aug 25 2015
MATHEMATICA
f[n_] := Block[{p = Flatten[Table[#1, {#2}] & @@@ FactorInteger@ n], len}, len = Length@ p; If[OddQ@ len, p[[1 + Floor[len/2]]], p[[len/2]]]]; {1}~Join~Table[f@ n, {n, 2, 96}] (* Michael De Vlieger, Aug 25 2015 *)
PROG
(PARI) a(n) = {if (n==1, return(1)); my(f=factor(n), v=vector(bigomega(f)), j=1); for (k=1, #f~, for (i=1, f[k, 2], v[j]=f[k, 1]; j++); ); v[(#v+1)\2]; } \\ Michel Marcus, Apr 15 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jan 13 2003
EXTENSIONS
Typo fixed by Franklin T. Adams-Watters, Jul 10 2012
STATUS
approved