login
A366016
G.f. A(x) satisfies: A(x) = x * (1 + A(x))^4 / (1 - 4 * A(x)).
6
0, 1, 8, 102, 1580, 27193, 499828, 9609372, 190869948, 3886281300, 80681111940, 1701418017390, 36345240847188, 784821812522062, 17103169093916120, 375670490644949624, 8308349385885678684, 184856293637482503660, 4134886240989315235840, 92928784113832360511800, 2097399158679611824619120
OFFSET
0,3
COMMENTS
Reversion of g.f. for heptagonal pyramidal numbers (with signs).
LINKS
Eric Weisstein's World of Mathematics, Heptagonal Pyramidal Number
Eric Weisstein's World of Mathematics, Series Reversion
FORMULA
a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(4*n,n-k-1) * 4^k for n > 0.
a(n) ~ sqrt(163 - 1521/sqrt(89)) * (4933 + 801*sqrt(89))^n / (sqrt(Pi) * n^(3/2) * 2^(9*n + 9/2)). - Vaclav Kotesovec, Sep 27 2023
MATHEMATICA
nmax = 20; A[_] = 0; Do[A[x_] = x (1 + A[x])^4/(1 - 4 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CoefficientList[InverseSeries[Series[x (1 - 4 x)/(1 + x)^4, {x, 0, 20}], x], x]
Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[4 n, n - k - 1] 4^k, {k, 0, n - 1}], {n, 1, 20}]]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 26 2023
STATUS
approved