login
A365938
Form the "Gilbreath Transform" array for the Euler phi function (A000010); sequence gives the third column, divided by 2.
1
1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1
OFFSET
1
EXAMPLE
The first 4 rows of the Gilbreath Transform array for phi(n) are:
1, 1, 2, 2, 4, 2, 6, 4, 6, 4,10, 4,12, 6, 8, 8,16, 6,18, 8,12,10,22, 8,20
0, 1, 0, 2, 2, 4, 2, 2, 2, 6, 6, 8, 6, 2, 0, 8,10,12,10, 4, 2,12,14,12, 8
1, 1, 2, 0, 2, 2, 0, 0, 4, 0, 2, 2, 4, 2, 8, 2, 2, 2, 6, 2,10, 2, 2, 4, 2
0, 1, 2, 2, 0, 2, 0, 4, 4, 2, 0, 2, 2, 6, 6, 0, 0, 4, 4, 8, 8, 0, 2, 2, 2
The third column is 2, 0, 2, 2, ..., which when halved gives the current sequence 1, 0, 1, 1, ...
I conjecture that the first column is (1,0) repeated, and the second column is all 1's.
MATHEMATICA
A365938list[nmax_]:=Module[{d=EulerPhi[Range[3, nmax+2]]}, Join[{1}, Table[First[d=Abs[Differences[d]]], nmax-1]/2]]; A365938list[200] (* Paolo Xausa, Sep 25 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 23 2023, following a suggestion from Sean A. Irvine
STATUS
approved