login
A365941
Irregular triangle read by rows: T(n,k) (0 <= k <= n^2) are coefficients of cluster density function for site percolation on an n X n 2D square lattice with periodic boundary conditions.
2
0, 1, 0, 4, 8, 4, 1, 0, 9, 54, 132, 171, 135, 84, 36, 9, 1, 0, 16, 192, 1040, 3340, 7104, 10872, 13136, 13500, 11584, 8024, 4368, 1820, 560, 120, 16, 1, 0, 25, 550, 5750, 37975, 177635, 625300, 1717700, 3767900, 6698700, 9746040, 11687850, 11647575, 9773725, 7044650, 4449220, 2480625, 1211300, 510150, 181900, 53630, 12675, 2300, 300, 25, 1
OFFSET
1,4
COMMENTS
The cluster density function is (1/n^2)*Sum_{k=0..n^2} T(n,k)*p^k*(1-p)^(n^2-k).
REFERENCES
S. Mertens, I. Jensen, and R. M. Ziff, Universal features of cluster numbers in percolation, Physical Review E 96 (2017) 052119.
LINKS
Stephan Mertens, Percolation (Gives first 7 rows)
EXAMPLE
Triangle begins:
0,1,
0,4,8,4,1,
0,9,54,132,171,135,84,36,9,1,
0,16,192,1040,3340,7104,10872,13136,13500,11584,8024,4368,1820,560,120,16,1,
0,25,550,5750,37975,177635,625300,1717700,3767900,6698700,9746040,11687850,11647575,9773725,7044650,4449220,2480625,1211300,510150,181900,53630,12675,2300,300,25,1,
...
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Oct 09 2023
STATUS
approved