login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365892
a(n) is the index of the n-th term of A365876 that includes at least one equation with at least one integer solution.
5
1, 4, 9, 11, 20, 22, 35, 37, 54, 56, 77, 79, 104, 106, 135, 137, 170, 172, 209, 211, 252, 254, 299, 301, 350, 352, 405, 407, 464, 466, 527, 529, 594, 596, 665, 667, 740, 742, 819, 821, 902, 904, 989, 991, 1080, 1082, 1175, 1177, 1274, 1276, 1377, 1379, 1484, 1486
OFFSET
1,2
COMMENTS
Observation (checked up to a(52)): a(n) = A266257(n) for n >= 2.
Conjectures in formula section hold for 2<=n<=300. - Chai Wah Wu, Oct 05 2023
FORMULA
Conjectures (see also A266257): (Start)
a(1) = 1, a(n) = ((n + 1)^2 - (-1)^n*(n - 1))/2 for n >= 2.
a(1) = 1, a(2) = 4, a(3) = 9, a(4) = 11, a(5) = 20, a(6) = 22, a(n) = a(n - 1) + 2*a(n - 2) - 2*a(n - 3) - a(n - 4) + a(n - 5) for n >= 7.
G.f.: (1 + x + 3*x^3 - x^4)/((1 - x)^3*(1 + x)^2). (End)
EXAMPLE
a(1) = 1 since the equation x^2 = 0 belonging to A365876(1) has the integer solution 0. 1 is the 1st term that includes at least one equation with at least one integer solution.
a(2) = 4 since the equation 2*x^2 + x - 1 = 0 belonging to A365876(4) has the integer solution -1. 4 is the 2nd term that includes at least one equation with at least one integer solution.
a(3) = 9 since the equation -x^2 + 4*x - 1 = 0 belonging to A365876(9) has the integer solution 2. 9 is the 3rd term that includes at least one equation with at least one integer solution.
a(4) = 11 since the equation 3*x^2 + 4*x - 4 = 0 belonging to A365876(11) has the integer solution -2. 11 is the 4th term that includes at least one equation with at least one integer solution.
MAPLE
A365892 := proc(n_A365876) local u, v, a, min, x_1, x_2; u := n_A365876; v := 0; a := false; min := true; while min = true do if u <> 0 and gcd(u, v) = 1 then x_1 := 1/2*(-v + sqrt(v^2 + 4*v*u))/u; x_2 := 1/2*(-v - sqrt(v^2 + 4*v*u))/u; if x_1 = floor(x_1) or x_2 = floor(x_2) then a := true; end if; end if; u := u - 2; v := 1/2*n_A365876 - 1/2*abs(u); if u < -1/9*n_A365876 then min := false; end if; end do; if a = true then return n_A365876; end if; end proc; seq(A365892(n_A365876), n_A365876 = 1 .. 1486);
PROG
(Python)
from math import gcd
from itertools import count, islice
from sympy import integer_nthroot
def A365892_gen(startvalue=1): # generator of terms >= startvalue
for n in count(max(startvalue, 1)):
if n == 1:
yield 1
else:
for v in range(1, n+1>>1):
u = n-(v<<1)
if gcd(u, v)==1:
v2, u2, a = v*v, v*(u<<2), u<<1
if v2+u2 >= 0:
d, r = integer_nthroot(v2+u2, 2)
if r and not ((d+v)%a and (d-v)%a):
yield n
break
if v2-u2 >= 0:
d, r = integer_nthroot(v2-u2, 2)
if r and not ((d+v)%a and (d-v)%a):
yield n
break
A365892_list = list(islice(A365892_gen(), 20)) # Chai Wah Wu, Oct 04 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Huber, Sep 22 2023
STATUS
approved