|
|
A266257
|
|
Total number of ON (black) cells after n iterations of the "Rule 11" elementary cellular automaton starting with a single ON (black) cell.
|
|
2
|
|
|
1, 2, 4, 9, 11, 20, 22, 35, 37, 54, 56, 77, 79, 104, 106, 135, 137, 170, 172, 209, 211, 252, 254, 299, 301, 350, 352, 405, 407, 464, 466, 527, 529, 594, 596, 665, 667, 740, 742, 819, 821, 902, 904, 989, 991, 1080, 1082, 1175, 1177, 1274, 1276, 1377, 1379
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
REFERENCES
|
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
|
|
LINKS
|
|
|
FORMULA
|
Conjectures from Colin Barker, Dec 27 2015 and Apr 14 2019: (Start)
a(n) = ((n+1)^2-(-1)^n*(n-1))/2.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>4.
G.f.: (1+x+3*x^3-x^4) / ((1-x)^3*(1+x)^2).
(End)
|
|
MATHEMATICA
|
rule=11; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]], {k, 1, rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc, k]], {k, 1, rows}] (* Number of Black cells through stage n *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|