login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365894
Expansion of e.g.f. exp( Sum_{k>=0} x^(3*k+4) / (3*k+4)! ).
2
1, 0, 0, 0, 1, 0, 0, 1, 35, 0, 1, 330, 5775, 1, 2717, 225225, 2627626, 21828, 6782490, 290990701, 2546343368, 190030590, 22939766851, 644182060203, 4514461227804, 1607617027501, 109664100094160, 2261215037103165, 13296854061626851, 15998661864449331
OFFSET
0,9
FORMULA
a(0)=1; a(n) = Sum_{k=0..floor((n-4)/3)} binomial(n-1,3*k+3) * a(n-3*k-4).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=0, N\3, x^(3*k+4)/(3*k+4)!))))
CROSSREFS
Sequence in context: A250488 A236237 A067156 * A291452 A343981 A174593
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 22 2023
STATUS
approved