OFFSET
0,3
COMMENTS
If M is a multiset of real numbers, then the sum multiset of M consists of the sums of pairs of distinct numbers in M. For example, the sum multiset of (1,2,4,5) is {3,5,6,6,7,9}.
FORMULA
a(n) = A325877(n) - (1 - n mod 2) for n > 0. - Andrew Howroyd, Sep 17 2023
EXAMPLE
The partitions of 8 are [8], [7,1], [6,2], [6,1,1], [5,3], [5,2,1], [5,1,1,1], [4,4], [4,3,1], [4,2,2], [4,2,1,1], [4,1,1,1,1], [3,3,2], [3,3,1,1], [3,2,2,1], [3,2,1,1,1], [3,1,1,1,1,1], [2,2,2,2], [2,2,2,1,1], [2,2,1,1,1,1], [2,1,1,1,1,1,1], [1,1,1,1,1,1,1,1]. The 7 partitions whose sum multiset is duplicate-free are [8], [7,1], [6,2], [5,3], [5,2,1], [4,4], [4,3,1].
MATHEMATICA
s[n_, k_] := s[n, k] = Subsets[IntegerPartitions[n][[k]], {2}];
g[n_, k_] := g[n, k] = DuplicateFreeQ[Map[Total, s[n, k]]];
t[n_] := Table[g[n, k], {k, 1, PartitionsP[n]}];
a[n_] := Count[t[n], True]
Table[a[n], {n, 1, 40}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Sep 17 2023
EXTENSIONS
More terms from Alois P. Heinz, Sep 17 2023
STATUS
approved