login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A032230
Number of ways to partition n elements into pie slices of different sizes of at least 2 allowing the pie to be turned over.
1
1, 0, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 8, 10, 14, 17, 21, 27, 35, 41, 64, 74, 100, 125, 167, 207, 267, 383, 470, 616, 794, 1027, 1307, 1703, 2085, 3015, 3632, 4796, 6022, 7913, 9817, 12809, 15935, 20157, 27408, 33776, 43112, 54937, 69863, 87637
OFFSET
0,6
LINKS
C. G. Bower, Transforms (2)
FORMULA
"DGK" (bracelet, element, unlabeled) transform of 0, 1, 1, 1...
PROG
(PARI) seq(n)={Vec(1 + sum(k=1, n, my(r=(k^2+3*k)/2); if(r<=n, if(k>2, (k-1)!, 2) * x^r / prod(j=1, k, 1 - x^j + O(x*x^(n-r)))))/2)} \\ Andrew Howroyd, Sep 20 2018
CROSSREFS
Sequence in context: A096765 A025147 A364613 * A238789 A126793 A069910
KEYWORD
nonn
EXTENSIONS
a(0)=1 prepended by Andrew Howroyd, Sep 20 2018
STATUS
approved