login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364493
a(n) = A364491(n) * A364492(n).
4
0, 2, 2, 1, 2, 45, 1, 35, 2, 3, 45, 275, 1, 195, 35, 105, 2, 1377, 3, 2375, 45, 175, 275, 1127, 1, 45, 195, 945, 35, 609, 105, 341, 2, 891, 1377, 875, 3, 13875, 2375, 13377, 45, 9225, 175, 10535, 275, 735, 1127, 5687, 1, 6615, 45, 8925, 195, 5565, 945, 35, 35, 399, 609, 3245, 105, 2013, 341, 819, 2, 47385, 891
OFFSET
0,2
LINKS
FORMULA
a(n) = lcm(n, A163511(n)) / A364255(n).
a(n) = 1 <=> A364258(n) = 0 <=> A364288(n) = 0.
PROG
(PARI)
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
A054429(n) = ((3<<#binary(n\2))-n-1);
A163511(n) = if(!n, 1, A005940(1+A054429(n)))
A364493(n) = { my(u=A163511(n)); (n/gcd(n, u))*(u/gcd(n, u)); };
(Python)
from math import gcd
from sympy import nextprime
def A364493(n):
c, p, k = 1, 1, n
while k:
c *= (p:=nextprime(p))**(s:=(~k&k-1).bit_length())
k >>= s+1
return n*c*p//gcd(c*p, n)**2 # Chai Wah Wu, Jul 26 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 26 2023
STATUS
approved