login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364288
a(n) = n - A243071(n).
8
1, 1, 0, 2, -2, 0, -8, 4, 4, -4, -20, 0, -50, -16, 2, 8, -110, 8, -236, -8, -8, -40, -488, 0, 14, -100, 18, -32, -994, 4, -2016, 16, -28, -220, 8, 16, -4058, -472, -86, -16, -8150, -16, -16340, -80, 20, -976, -32720, 0, 26, 28, -202, -200, -65482, 36, -4, -64, -452, -1988, -131012, 8, -262082, -4032, 6, 32, -58, -56
OFFSET
1,4
LINKS
FORMULA
a(n) = A364258(A243071(n)).
For n >= 1, a(2*n) = 2*a(n).
For n >= 0, a(A007283(n)) = 0.
MATHEMATICA
nn = 60; f[x_] := Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First[#], Last[#] ] &@ Transpose@ FactorInteger@ x; Do[a[n] = Which[n <= 2, n - 1, OddQ[n], 1 + 2 a[f[n]], True, 2 a[n/2] ], {n, nn}]; Array[# - a[#] &, nn] (* Michael De Vlieger, Jul 25 2023 *)
PROG
(PARI)
A064989(n) = { my(f=factor(n>>valuation(n, 2))); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
A243071(n) = if(n<=2, n-1, if(!(n%2), 2*A243071(n/2), 1+(2*A243071(A064989(n)))));
A364288(n) = (n-A243071(n));
CROSSREFS
Cf. A243071, A364256 [= gcd(n,a(n))], A364258.
Cf. A007283 (positions of 0's, conjectured), A364289 (positions of terms <= 0), A364290 (of terms > 0), A364291 (of terms >= 0).
Cf. also A364253.
Sequence in context: A137456 A337710 A248948 * A009187 A009803 A009615
KEYWORD
sign
AUTHOR
Antti Karttunen, Jul 25 2023
STATUS
approved