The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A363754 a(n) = Sum_{k=0..n} F(2k-1)*F(2k)*F(2k+1)/2, where F(n) is the Fibonacci number A000045(n). 1
 0, 1, 16, 276, 4917, 88132, 1581196, 28372701, 509125596, 9135883240, 163936760185, 2941725767256, 52787126964456, 947226559367881, 16997290941068152, 305004010378316172, 5473074895864584141, 98210344115173624636, 1762313119177232976916, 31623425801074947486405 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS This is one of the triple Fibonacci sums that were considered by Subba Rao (1953). Taking any of the given closed-form expressions for a(n) with Fibonacci numbers, one can extend a(n) to negative indices by using the property F(-n)=(-1)^(n+1). This gives a(-n)=a(n-1). LINKS Table of n, a(n) for n=0..19. K. Subba Rao, Some properties of Fibonacci numbers, The American Mathematical Monthly, 60(10):680-684, December 1953. Index entries for linear recurrences with constant coefficients, signature (22,-77,77,-22,1). FORMULA a(n) = (F(2n+1)^3 + F(2n+1) - 2)/8. a(n) = (F(6*n+3)+8*F(2*n+1)-10)/40. a(n) = 22*a(n-1) - 77*a(n-2) + 77*a(n-3) - 22*a(n-4) + a(n-5). G.f.: x*(1 - 6*x + x^2)/((1 - x)*(1 - 3*x + x^2)*(1 - 18*x + x^2)). MATHEMATICA LinearRecurrence[{22, -77, 77, -22, 1}, {0, 1, 16, 276, 4917}] CROSSREFS Cf. A000045, A256178, A363753. Sequence in context: A158610 A221176 A231695 * A004382 A204955 A189955 Adjacent sequences: A363751 A363752 A363753 * A363755 A363756 A363757 KEYWORD nonn,easy AUTHOR Hans J. H. Tuenter, Jun 19 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 15:08 EDT 2024. Contains 372968 sequences. (Running on oeis4.)