The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256178 Expansion of exp( Sum_{n >= 1} L(2*n)*L(4*n)*x^n/n ), where L(n) = A000032(n) is a Lucas number. 4
 1, 21, 385, 6930, 124410, 2232594, 40062659, 718896255, 12900072515, 231482415780, 4153783429236, 74536619356836, 1337505365115205, 24000559953034665, 430672573790340805, 7728105768275278134, 138675231255170368494 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Let L(n) = A000032(n) denote the n-th Lucas number. For a fixed positive integer k, the power series expansion of exp( Sum_{n >= 1} L(k*n)x^n/n ) has integer coefficients given by the formula F(k*n)/F(k), where F(n) = A000045(n) [Johnson, 2.22]. The power series expansion of exp( Sum_{n >= 1} L(k*n)*L(2*k*n) *x^n/n ) has integer coefficients given by ( F(k*(n + 1))*F(k*(n + 2))*F(k*(n + 3)) )/( F(k)*F(2*k)*F(3*k) ) The present sequence is the particular case k = 2. See A001655 for the case k = 1. LINKS Table of n, a(n) for n=0..16. B. Johnson, Fibonacci Identities by Matrix Methods and Generalisation to Related Sequences Eric W. Weisstein, Fibonacci Number Index entries for linear recurrences with constant coefficients, signature (21,-56,21,-1). FORMULA a(n) = ( F(2*n + 2)*F(2*n + 4)*F(2*n + 6) )/( F(2)*F(4)*F(6) ). a(n) = (1/8) * Sum_{k = 0..n} F(2*k + 2)*F(6*n - 6*k + 6). O.g.f.: 1/( (1 - 3*x + x^2)*(1 - 18*x + x^2) ) = 1/8 * Sum_{n >= 0} F(2*n + 2)*x^n * Sum_{n >= 0} F(6*n + 6)*x^n. O.g.f. also equals exp( Sum_{n >= 1} ( trace( M^(2*n) + M^(6*n) )*x^n/n ), where M is the 2X2 matrix [ 1, 1; 1, 0 ]. Recurrences: a(n) = 21*a(n-1) - 56*a(n-2) + 21*a(n-3) - a(n-4). Also a(0) = 1 and for n >= 1, a(n) = (1/n)*Sum_{k = 1..n} L(2*k)*L(4*k)*a(n-k). From Peter Bala, Aug 19 2022: (Start) Sum_{n >= 0} 1/a(n) = 40/3 - 8*Sum_{n >= 1} 1/F(2*n) = 40/3 - 8*A153386. Sum_{n >= 0} (-1)^n/a(n) = - 88/3 + 40*Sum_{n >= 1} (-1)^(n+1)/F(2*n). Cf. A265288. (End) MAPLE seq((1/24)*fibonacci(2*n+2)*fibonacci(2*n+4)*fibonacci(2*n+6), n = 0 .. 16); MATHEMATICA Table[1/8 * Sum[Fibonacci[2*k + 2]*Fibonacci[6*n - 6*k + 6], {k, 0, n}], {n, 0, 17}] (* or *) RecurrenceTable[{a[n] == 21*a[n - 1] - 56*a[n - 2] + 21*a[n - 3] - a[n - 4], a[1] == 1, a[2] == 21, a[3] == 385, a[4] == 6930}, a, {n, 17}] (* Michael De Vlieger, Mar 18 2015 *) CROSSREFS Cf. A000032, A000045, A001655, A010048, A153386, A265288. Sequence in context: A240683 A108740 A297455 * A372904 A094172 A296723 Adjacent sequences: A256175 A256176 A256177 * A256179 A256180 A256181 KEYWORD nonn,easy AUTHOR Peter Bala, Mar 18 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 14:34 EDT 2024. Contains 372968 sequences. (Running on oeis4.)