login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363755
The original n X n X n dots problem: minimal number of straight lines (connected at their endpoints) required to join all the n^3 points belonging to the set {{0,1,...,n-1} X {0,1,...,n-1} X {0,1,...,n-1}} in R^3, without any additional constraint.
5
OFFSET
1,2
COMMENTS
The most natural mathematical generalization of the well-known "Nine Dots Problem" by Sam Loyd (published in Cyclopedia of puzzles, p. 301, in 1914) is an NP-hard challenge with no AABB, no constraint about visiting any vertex more than once or self-crossing lines, no restriction on the turning angles available.
This problem has been solved for n < 4 (see links), while it has been proved that a(4) is 21, 22, or 23, since a covering trail (for the n = 4 case) having 23 links is given by (3,3,1)-(1,3,1)-(-2,0,1)-(4,0,1)-(3,0,3)-(3,3,3)-(0,0,0)-(3,0,0)-(0,3,3)-(0,0,3)-(3,3,0)-(-1,3,0)-(2,3,3)-(2,-1,3)-(-1,2,0)-(4,2,0)-(1,-1,3)-(1,4,3)-(4,1,0)-(-1,1,0)-(3,3,2)-(3,-2,2)-(0,7,2)-(0,0,2).
A covering trail for the n = 5 case with a link-length of 36 is (2,3,3)-(-1,0,3)-(4,0,3)-(0,4,3)-(5,4,3)- (3,2,1)-(-1,0,1)-(4,5,1)-(4,0,1)-(0,0,1)-(0,4,1)-(5,-1,1)-(3,3,3)-(0,-3,0)-(0,5,0)-(4,1,4)- (-1,1,4)-(3,5,0)-(3,0,0)-(-1,4,4)-(4,4,4)-(4,0,0)-(4,4,0)-(0,0,4)-(5,0,4)-(1,4,0)-(1,-1,0)- (5,3,4)-(0,3,4)-(2,-1,0)-(2,4,0)-(4,2,4)-(0,2,4)-(4,0,2)-(0,0,2)-(0,4,2)-(4,4,2).
REFERENCES
Sam Loyd, Cyclopedia of Puzzles, The Lamb Publishing Company, 1914, page 301.
LINKS
Roberto Rinaldi and Marco Ripà, Optimal cycles enclosing all the nodes of a k-dimensional hypercube, arXiv:2212.11216 [math.CO], 2022.
Marco Ripà, Solving the 106 years old 3^k points problem with the clockwise-algorithm, Journal of Fundamental Mathematics and Applications, 2020, 3(2), 84-97.
Marco Ripà, Minimum-Link Covering Trails for any Hypercubic Lattice, arXiv:2208.01699 [math.GM], 2022.
Wikipedia, Nine dots puzzle
FORMULA
For any n >= 3, (n^3 - 1)/n - 1) <= a(n) <= floor((3*n^2)/2) - floor((n - 1)/4) + floor((n + 1)/4) - floor((n + 2)/4) + floor(n/4) + n - 2.
EXAMPLE
For n = 2, a(2) = 6, since it is not possible to touch the 8 vertices of a cube by spending fewer than 6 straight lines (see Theorem 2.2 in Optimal cycles enclosing all the nodes of a k-dimensional hypercube).
CROSSREFS
KEYWORD
nonn,more,hard,bref
AUTHOR
Marco Ripà, Jun 19 2023
STATUS
approved