login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A363669
a(n) = Sum_{d|n} (n/d)^n * binomial(d+n-1,d).
1
1, 11, 91, 1219, 15751, 299291, 5766517, 136667939, 3490056406, 100539251801, 3138428729437, 107169878769043, 3937376390899589, 155639310270607349, 6568429274592664981, 295186202455912472867, 14063084452068891794119, 708261127356256620907496
OFFSET
1,2
FORMULA
a(n) = [x^n] Sum_{k>0} (1/(1 - (k*x)^k)^n - 1).
MATHEMATICA
a[n_] := DivisorSum[n, (n/#)^n * Binomial[# + n - 1, #] &]; Array[a, 20] (* Amiram Eldar, Jul 12 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (n/d)^n*binomial(d+n-1, d));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 14 2023
STATUS
approved