login
A343549
a(n) = n * Sum_{d|n} binomial(d+n-1,n)/d.
7
1, 5, 13, 49, 131, 545, 1723, 6809, 24484, 94445, 352727, 1366273, 5200313, 20135939, 77571083, 301034537, 1166803127, 4540794476, 17672631919, 68943346009, 269129827042, 1052178506615, 4116715363823, 16124644677569, 63205303337656, 247964681424725, 973469783435197
OFFSET
1,2
LINKS
FORMULA
a(n) = [x^n] Sum_{k>=1} k * x^k/(1 - x^k)^(n+1).
a(n) = [x^n] Sum_{k>=1} binomial(k+n-1,n) * x^k/(1 - x^k)^2.
From Seiichi Manyama, Jun 14 2023: (Start)
a(n) = Sum_{d|n} binomial(d+n-1,d).
a(n) = [x^n] Sum_{k>=1} (1/(1 - x^k)^n - 1). (End)
MATHEMATICA
a[n_] := n * DivisorSum[n, Binomial[# + n - 1, n]/# &]; Array[a, 30] (* Amiram Eldar, Apr 25 2021 *)
PROG
(PARI) a(n) = n*sumdiv(n, d, binomial(d+n-1, n)/d);
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 19 2021
STATUS
approved