login
A363666
a(n) = Sum_{d|n} (n/d)^(d-1) * binomial(d+n-2,n-1).
1
1, 3, 7, 29, 71, 355, 925, 4425, 13276, 60111, 184757, 856357, 2704157, 12137147, 40367461, 176999505, 601080391, 2616894901, 9075135301, 38884056181, 138014377810, 583674491643, 2104098963721, 8823912454489, 32247616479976, 133998376789707
OFFSET
1,2
FORMULA
a(n) = [x^n] Sum_{k>0} x^k/(1 - k*x^k)^n.
MATHEMATICA
a[n_] := DivisorSum[n, (n/#)^(#-1) * Binomial[# + n - 2, n - 1] &]; Array[a, 25] (* Amiram Eldar, Jul 12 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (n/d)^(d-1)*binomial(d+n-2, n-1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 14 2023
STATUS
approved