login
A363667
a(n) = Sum_{d|n} (n/d)^(n-n/d) * binomial(d+n-2,n-1).
2
1, 3, 7, 37, 71, 751, 925, 13161, 45676, 262911, 184757, 18014557, 2704157, 133062875, 2838201061, 16907954129, 601080391, 830283170617, 9075135301, 87074953375981, 246003195539410, 53321730394923, 2104098963721, 479275771000215865, 1952680410445479976
OFFSET
1,2
FORMULA
a(n) = [x^n] Sum_{k>0} x^k/(1 - (k*x)^k)^n.
MATHEMATICA
a[n_] := DivisorSum[n, (n/#)^(n-n/#) * Binomial[# + n - 2, n - 1] &]; Array[a, 25] (* Amiram Eldar, Jul 12 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (n/d)^(n-n/d)*binomial(d+n-2, n-1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 14 2023
STATUS
approved