login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342628
a(n) = Sum_{d|n} d^(n-d).
15
1, 2, 2, 6, 2, 45, 2, 322, 731, 3383, 2, 132901, 2, 827641, 10297068, 33570818, 2, 2578617270, 2, 44812807567, 678610493340, 285312719189, 2, 393061010002613, 95367431640627, 302875123369471, 150094917726535604, 569939345952661545, 2, 105474306078445349841, 2
OFFSET
1,2
LINKS
FORMULA
G.f.: Sum_{k>=1} x^k/(1 - (k * x)^k).
If p is prime, a(p) = 2.
MATHEMATICA
a[n_] := DivisorSum[n, #^(n - #) &]; Array[a, 30] (* Amiram Eldar, Mar 17 2021 *)
PROG
(PARI) a(n) = sumdiv(n, d, d^(n-d));
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-(k*x)^k)))
(Python)
from sympy import divisors
def A342628(n): return sum(d**(n-d) for d in divisors(n, generator=True)) # Chai Wah Wu, Jun 19 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 16 2021
STATUS
approved