OFFSET
1,3
COMMENTS
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11157 (a(11157) = 2^64.)
Michael De Vlieger, Log log scatterplot of a(n), n = 1..1203278.
Michael De Vlieger, Plot S(n,k) in row a(n) of A272011 at (x,y) = (n,k), n = 1..2048.
FORMULA
a(2^k) = 2^(k-1) for k > 0.
a(A006939(k)) = 2^k-1 for k > 0.
EXAMPLE
Table relating this sequence to A087980, where b(n) = A087980(n), f(n) = A067255(n), g(n) = A272011(n), and a(n)_2 the binary expansion of a(n):
n b(n) f(b(n)) a(n) g(a(n)) a(n)_2
1 1 0 0
2 2 1 1 0 1
3 4 2 2 1 1.
4 8 3 4 2 1..
5 12 2,1 3 1,0 11
6 16 4 8 3 1...
7 24 3,1 5 2,0 1.1
8 32 5 16 4 1....
9 48 4,1 9 3,0 1..1
10 64 6 32 5 1.....
11 72 3,2 6 2,1 11.
12 96 5,1 17 4,0 1...1
13 128 7 64 6 1......
14 144 4,2 10 3,1 1.1.
15 192 6,1 33 5,0 1....1
16 256 8 128 7 1.......
17 288 5,2 18 4,1 1..1.
18 360 3,2,1 7 2,1,0 111
...
MATHEMATICA
m = 15; f[n_] := Times @@ MapIndexed[Prime[First[#2]]^(#1 + 1) &, Length[#] - Position[#, 1][[All, 1]]] &[IntegerDigits[n, 2]]; SortBy[Select[Array[{#, f[#]} &, 2^(m + 1)], Last[#] <= 2^m &], Last][[All, 1]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Jun 09 2023
STATUS
approved