OFFSET
1,2
COMMENTS
This representation provides a natural ordering between strictly decreasing sequences of natural numbers. Let f and g be such sequences with f(1) > f(2) > ... > f(m) and g(1) > g(2) > ... > g(n). Define f < g iff p^f < p^g, where p^f is short for Product(i=1..m) p_i^f(i) and p^g is defined likewise as Product(i=1..n) p_i^g(i).
Note that "strictly decreasing sequences of natural numbers" is another way to say "partitions into distinct parts".
Also products of primorial numbers p_1#^k_1 * p_2#^k_2 * ... * p_n#^k_n where all k_i > 0.
Numbers whose prime indices cover an initial interval of positive integers with strictly decreasing multiplicities. Intersection of A055932 and A304686. First differs from A181818 in having 72. - Gus Wiseman, Oct 21 2022
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
FORMULA
The numbers of the form Product(i=1..n) p_i^k_i where p_i = A000040(i) is the i-th prime and k_1 > k_2 > ... > k_n are positive natural numbers.
Compute x = 2^k_1 * 3^k_2 * 5^k_3 * 7^k_4 * 11^k_5 for k_1 > ... > k_5 allowing k_i = 0 for i > 1 and k_i = k_(i+1) in that case. Discard all x > 174636000 = 2^5*3^4*5^3*7^2*11 and enumerate those below. For more members take higher primes into account.
EXAMPLE
The sequence starts with a(1)=1, a(2)=2, a(3)=4 and a(4)=8. The next term is a(5)=12 = 2^2*3^1 = p_1^k_1 * p_2^k_2 with k_1=2 > k_2=1.
MATHEMATICA
selQ[k_] := Module[{n = k, e = IntegerExponent[k, 2], t}, n /= 2^e; For[p = 3, True, p = NextPrime[p], t = IntegerExponent[n, p]; If[t == 0, Return[n == 1]]; If[t >= e, Return[False]]; e = t; n /= p^e]];
Select[Range[12000], selQ] (* Jean-François Alcover, Mar 27 2020, after first PARI program *)
PROG
(Haskell)
import Data.List (isPrefixOf)
a087980 n = a087980_list !! (n-1)
a087980_list = 1 : filter f [2..] where
f x = isPrefixOf ps a000040_list && all (< 0) (zipWith (-) (tail es) es)
where ps = a027748_row x; es = a124010_row x
-- Reinhard Zumkeller, Apr 13 2015
(PARI) is(n)=my(e=valuation(n, 2), t); n>>=e; forprime(p=3, , t=valuation(n, p); if(t==0, return(n==1)); if(t>=e, return(0)); e=t; n/=p^e) \\ Charles R Greathouse IV, Jun 25 2017
(PARI) list(lim)=my(v=[], u=powers(2, logint(lim\=1, 2)), w, p=2, t); forprime(q=3, , w=List(); for(i=1, #u, t=u[i]; for(e=1, valuation(u[i], p)-1, t*=q; if(t>lim, break); listput(w, t))); v=concat(v, Vec(u)); if(#w==0, break); u=w; p=q); Set(v) \\ Charles R Greathouse IV, Jun 25 2017
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Rainer Rosenthal, Oct 27 2003
EXTENSIONS
Edited by Franklin T. Adams-Watters, Apr 25 2006
Offset change to 1 by T. D. Noe, May 24 2010
STATUS
approved