Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jun 11 2023 12:29:33
%S 0,1,2,4,3,8,5,16,9,32,6,17,64,10,33,128,18,7,65,12,256,34,11,129,20,
%T 512,66,19,257,36,1024,13,130,24,35,513,68,2048,21,258,40,67,1025,132,
%U 4096,37,514,72,14,131,2049,25,260,48,8192,69,1026,136,22,259,4097,41,516,80,16384,133,2050,264,38
%N Rewrite A087980(n) = Product_{i=1..m} p(i)^e(i) instead as Sum_{i=1..m} 2^(i-1), where m = omega(A087980(n)) = A001221(A087980(n)).
%C Permutation of nonnegative numbers.
%C Rewriting nonnegative numbers n = Sum_{i=1..A000120(n)} 2^i instead as Product_{i=1..A000120(n)} p(i)^(e(i)+1) gives A362227.
%H Michael De Vlieger, <a href="/A363537/b363537.txt">Table of n, a(n) for n = 1..11157</a> (a(11157) = 2^64.)
%H Michael De Vlieger, <a href="/A363537/a363537.png">Log log scatterplot of a(n)</a>, n = 1..1203278.
%H Michael De Vlieger, <a href="/A363537/a363537_1.png">Plot S(n,k) in row a(n) of A272011 at (x,y) = (n,k)</a>, n = 1..2048.
%F a(2^k) = 2^(k-1) for k > 0.
%F a(A006939(k)) = 2^k-1 for k > 0.
%e Table relating this sequence to A087980, where b(n) = A087980(n), f(n) = A067255(n), g(n) = A272011(n), and a(n)_2 the binary expansion of a(n):
%e n b(n) f(b(n)) a(n) g(a(n)) a(n)_2
%e 1 1 0 0
%e 2 2 1 1 0 1
%e 3 4 2 2 1 1.
%e 4 8 3 4 2 1..
%e 5 12 2,1 3 1,0 11
%e 6 16 4 8 3 1...
%e 7 24 3,1 5 2,0 1.1
%e 8 32 5 16 4 1....
%e 9 48 4,1 9 3,0 1..1
%e 10 64 6 32 5 1.....
%e 11 72 3,2 6 2,1 11.
%e 12 96 5,1 17 4,0 1...1
%e 13 128 7 64 6 1......
%e 14 144 4,2 10 3,1 1.1.
%e 15 192 6,1 33 5,0 1....1
%e 16 256 8 128 7 1.......
%e 17 288 5,2 18 4,1 1..1.
%e 18 360 3,2,1 7 2,1,0 111
%e ...
%t m = 15; f[n_] := Times @@ MapIndexed[Prime[First[#2]]^(#1 + 1) &, Length[#] - Position[#, 1][[All, 1]]] &[IntegerDigits[n, 2]]; SortBy[Select[Array[{#, f[#]} &, 2^(m + 1)], Last[#] <= 2^m &], Last][[All, 1]]
%Y Cf. A000079, A001221, A006939, A087980, A362227.
%K nonn
%O 1,3
%A _Michael De Vlieger_, Jun 09 2023