login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363261
The partial sums of the prime indices of n include half the sum of all prime indices of n.
1
4, 9, 12, 16, 25, 30, 40, 48, 49, 63, 64, 70, 81, 84, 108, 112, 121, 144, 154, 160, 165, 169, 192, 198, 220, 256, 264, 270, 273, 286, 289, 325, 351, 352, 360, 361, 364, 390, 442, 448, 468, 480, 520, 529, 561, 567, 576, 595, 624, 625, 640, 646, 675, 714, 729
OFFSET
1,1
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The terms together with their prime indices begin:
4: {1,1}
9: {2,2}
12: {1,1,2}
16: {1,1,1,1}
25: {3,3}
30: {1,2,3}
40: {1,1,1,3}
48: {1,1,1,1,2}
49: {4,4}
63: {2,2,4}
64: {1,1,1,1,1,1}
70: {1,3,4}
81: {2,2,2,2}
84: {1,1,2,4}
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], MemberQ[Accumulate[prix[#]], Total[prix[#]]/2]&]
CROSSREFS
Partitions of this type are counted by A322439.
For parts instead of partial sums we have A344415, counted by A035363.
A025065 counts palindromic partitions, ranked by A265640.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A301987 lists numbers whose sum of prime indices equals their product.
A322109 ranks partitions of n with no part > n/2, counted by A110618.
Sequence in context: A357976 A330879 A357636 * A360953 A348272 A285419
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 06 2023
STATUS
approved