login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362973
The number of cubefull numbers (A036966) not exceeding 10^n.
4
1, 2, 7, 20, 51, 129, 307, 713, 1645, 3721, 8348, 18589, 41136, 90619, 198767, 434572, 947753, 2062437, 4480253, 9718457, 21055958, 45575049, 98566055, 213028539, 460160083, 993533517, 2144335391, 4626664451, 9980028172, 21523027285, 46408635232, 100053270534
OFFSET
0,2
COMMENTS
The number of cubefull numbers not exceeding x is N(x) = c_0 * x^(1/3) + c_1 * x^(1/4) + c_2 * x^(1/5) + o(x^(1/8)), where c_0 (A362974), c_1 (A362975) and c_2 (A362976) are constants (Bateman and Grosswald, 1958; Finch, 2003).
The digits of a(3k) converge to A362974 as k -> oo. - Chai Wah Wu, May 13 2023
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.6.1, pp. 113-115.
LINKS
Paul T. Bateman and Emil Grosswald, On a theorem of Erdős and Szekeres, Illinois Journal of Mathematics, Vol. 2, No. 1 (1958), pp. 88-98.
A. Ivić and P. Shiu, The distribution of powerful integers, Illinois Journal of Mathematics, Vol. 26, No. 4 (1982), pp. 576-590.
Ekkehard Krätzel, On the distribution of square-full and cube-full numbers, Monatshefte für Mathematik, Vol. 120, No. 2 (1995), pp. 105-119.
P. Shiu, The distribution of cube-full numbers, Glasgow Mathematical Journal, Vol. 33, No. 3 (1991), pp. 287-295.
P. Shiu, Cube-full numbers in short intervals, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 112, No. 1 (1992), pp. 1-5.
EXAMPLE
There are 2 cubefull numbers not exceeding 10, 1 and 8, therefore a(1) = 2.
MATHEMATICA
a[n_] := Module[{max = 10^n}, CountDistinct@ Flatten@ Table[i^5 * j^4 * k^3, {i, Surd[max, 5]}, {j, Surd[max/i^5, 4]}, {k, CubeRoot[max/(i^5*j^4)]}]]; Array[a, 15, 0]
PROG
(Python)
from math import gcd
from sympy import factorint, integer_nthroot
def A362973(n):
m, c = 10**n, 0
for x in range(1, integer_nthroot(m, 5)[0]+1):
if all(d<=1 for d in factorint(x).values()):
for y in range(1, integer_nthroot(z:=m//x**5, 4)[0]+1):
if gcd(x, y)==1 and all(d<=1 for d in factorint(y).values()):
c += integer_nthroot(z//y**4, 3)[0]
return c # Chai Wah Wu, May 11-13 2023
CROSSREFS
Similar sequences: A070428, A118896.
Sequence in context: A335927 A261054 A134311 * A066373 A096005 A050532
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 11 2023
EXTENSIONS
a(23)-a(31) from Chai Wah Wu, May 11 2023
STATUS
approved