OFFSET
0,2
COMMENTS
The number of cubefull numbers not exceeding x is N(x) = c_0 * x^(1/3) + c_1 * x^(1/4) + c_2 * x^(1/5) + o(x^(1/8)), where c_0 (A362974), c_1 (A362975) and c_2 (A362976) are constants (Bateman and Grosswald, 1958; Finch, 2003).
The digits of a(3k) converge to A362974 as k -> oo. - Chai Wah Wu, May 13 2023
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.6.1, pp. 113-115.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 0..36
Paul T. Bateman and Emil Grosswald, On a theorem of Erdős and Szekeres, Illinois Journal of Mathematics, Vol. 2, No. 1 (1958), pp. 88-98.
A. Ivić and P. Shiu, The distribution of powerful integers, Illinois Journal of Mathematics, Vol. 26, No. 4 (1982), pp. 576-590.
Ekkehard Krätzel, On the distribution of square-full and cube-full numbers, Monatshefte für Mathematik, Vol. 120, No. 2 (1995), pp. 105-119.
P. Shiu, The distribution of cube-full numbers, Glasgow Mathematical Journal, Vol. 33, No. 3 (1991), pp. 287-295.
P. Shiu, Cube-full numbers in short intervals, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 112, No. 1 (1992), pp. 1-5.
EXAMPLE
There are 2 cubefull numbers not exceeding 10, 1 and 8, therefore a(1) = 2.
MATHEMATICA
a[n_] := Module[{max = 10^n}, CountDistinct@ Flatten@ Table[i^5 * j^4 * k^3, {i, Surd[max, 5]}, {j, Surd[max/i^5, 4]}, {k, CubeRoot[max/(i^5*j^4)]}]]; Array[a, 15, 0]
PROG
(Python)
from math import gcd
from sympy import factorint, integer_nthroot
def A362973(n):
m, c = 10**n, 0
for x in range(1, integer_nthroot(m, 5)[0]+1):
if all(d<=1 for d in factorint(x).values()):
for y in range(1, integer_nthroot(z:=m//x**5, 4)[0]+1):
if gcd(x, y)==1 and all(d<=1 for d in factorint(y).values()):
c += integer_nthroot(z//y**4, 3)[0]
return c # Chai Wah Wu, May 11-13 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 11 2023
EXTENSIONS
a(23)-a(31) from Chai Wah Wu, May 11 2023
STATUS
approved