login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362804
Numbers k such that the set of divisors {d | k, BitOr(k, d) = k} has an integer harmonic mean.
3
1, 2, 4, 6, 8, 12, 16, 24, 28, 30, 32, 45, 48, 56, 60, 64, 90, 96, 112, 120, 128, 180, 192, 224, 240, 256, 360, 384, 448, 480, 496, 512, 720, 768, 896, 960, 992, 1024, 1440, 1536, 1792, 1920, 1984, 2048, 2880, 3072, 3584, 3840, 3968, 4096, 5760, 6144, 7168, 7680
OFFSET
1,2
COMMENTS
Equivalently, the set of divisors can be defined by {d | k, BitAnd(k, d) = d}.
Analogous to harmonic (or Ore) numbers (A001599) where the divisors d of k are restricted by BitOr(k, d) = k or BitAnd(k, d) = d.
If k is a term then so is 2*k. The primitive terms are in A362805. Thus, this sequence includes all the powers of 2 (A000079), all the numbers of the form 3*2^m and 15*2^m for m >= 1, and all the numbers of the form 7*2^m for m >= 2.
All the even perfect numbers (A000396) are terms: if k = 2^(p-1)*(2^p-1) is a perfect number (where p is a Mersenne exponent, A000043), then the only divisors of k such that BitOr(k, d) = k are 2^(p-1) and k itself, and the harmonic mean of 2^(p-1) and 2^(p-1)*(2^p-1) is 2^p - 1.
Are 1 and 45 the only odd terms in this sequence?
LINKS
MATHEMATICA
q[n_] := IntegerQ[HarmonicMean[Select[Divisors[n], BitAnd[n, #] == # &]]]; Select[Range[10^4], q]
PROG
(PARI) div(n) = select(x->(bitor(x, n) == n), divisors(n));
is(n) = {my(d = div(n)); denominator(#d/sum(i = 1, #d, 1/d[i])) == 1; }
CROSSREFS
Subsequences: A000079, A007283 \ {3}, A005009 \ {7, 14}, A110286 \ {15}, A362805.
Similar sequences: A001599, A006086, A063947, A286325, A319745.
Sequence in context: A058629 A323508 A324850 * A095810 A025487 A333964
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, May 04 2023
STATUS
approved