login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362333
Least nonnegative integer k such that (gpf(n)!)^k is divisible by n, where gpf(n) is the greatest prime factor of n.
5
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 4, 1, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
First differs from A088388 at n = 40.
FORMULA
a(n) > 1 if and only if n is in A057109.
a(n) <= A051903(n).
a(n) = ceiling(A371148(n)/A371149(n)). - Pontus von Brömssen, Mar 16 2024
EXAMPLE
For n = 12, gpf(n)! = 3! = 6 is not divisible by 12, but (3!)^2 = 36 is divisible by 12, so a(12) = 2.
PROG
(Python)
from sympy import factorint
def A362333(n):
f = factorint(n)
gpf = max(f, default=None)
a = 0
for p in f:
m = gpf
v = 0
while m >= p:
m //= p
v += m
a = max(a, -(-f[p]//v))
return a
KEYWORD
nonn
AUTHOR
STATUS
approved