login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362070
Let m_min(n, k) be the smallest m such that n divides Product_{t=1..m} RisingFactorial(t, k). a(n) = Sum_{r=1..K(n)} m_min(n, r), where K(n) is the Kempner number A002034(n).
0
1, 3, 6, 9, 15, 6, 28, 10, 16, 15, 66, 9, 91, 28, 15, 16, 153, 16, 190, 15, 28, 66, 276, 10, 33, 91, 29, 28, 435, 15, 496, 24, 66, 153, 28, 16, 703, 190, 91, 15, 861, 28, 946, 66, 18, 276, 1128, 16, 54, 33, 153, 91, 1431, 29, 66, 28, 190
OFFSET
1,2
COMMENTS
The first two solutions of the equation a(n) = n which are not consecutive triangular numbers with odd prime indices are 1, 16. Is there a larger n? If such a number n exists, it is larger than 10^4.
Conjecture: the equation a(n) = a(n+1) has no solutions. This holds up to at least n = 10^4.
Conjecture: the constant Sum_{n >= 2} 1/a(n)! = 0.16945... is irrational.
LINKS
FORMULA
a(1) = 1.
a(p) = p*(p + 1)/2 for p prime.
a(p_1*p_2*...*p_u) = p_u*(p_u + 1)/2, where p_i's are distinct primes and p_1 < p_2 < ... < p_u.
a(P) = P, where P is a perfect number.
a(p*(p + 1)/2) = p*(p + 1)/2 for p prime.
a(n!) = 3*n + ((gpf(n!)^2 - 5*gpf(n!))/2 for n <> 4.
EXAMPLE
a(18) = 16 because:
- for r = 1: 18 does not divide (1), (1)*(2), (1)*(2)*(3), (1)*(2)*(3)*(4), (1)*(2)*(3)*(4)*(5) and divides (1)*(2)*(3)*(4)*(5)*(6), then m_min(18, 1) = 6 = A002034(18) = K(18);
- for r = 2: 18 does not divide (1*2), (1*2)*(2*3) and divides (1*2)*(2*3)*(3*4), then m_min(18, 2) = 3;
- for r = 3: 18 does not divide (1*2*3) and divides (1*2*3)*(2*3*4), then m_min(18, 3) = 2;
- for r = 4: 18 does not divide (1*2*3*4) and divides (1*2*3*4)*(2*3*4*5), then m_min(18, 4) = 2;
- for r = 5: 18 does not divide (1*2*3*4*5) and divides (1*2*3*4*5)*(2*3*4*5*6), then m_min(18, 5) = 2;
- for r = 6 = K(18): 18 divides (1*2*3*4*5*6), then m_min(18, 6) = 1, hence a(18) = 6 + 3 + 2 + 2 + 2 + 1 = 16.
PROG
(Maxima)
K(u):=(b:1, for i:1 while mod(b, u)#0 do (c:i, b:b*(i+1)), c+1);
a(n):=(s:0, for r:2 thru K(n)-1 do (z:product(j, j, 1, r), for q:1 while mod(z, n)#0 do (z:z*product(y, y, q+1, q+r), m:q+1), s:s+m), s+K(n)+1);
makelist(a(n), n, 2, 100);
CROSSREFS
KEYWORD
nonn
AUTHOR
Lechoslaw Ratajczak, May 17 2023
STATUS
approved