login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A361964 Total number of peaks in 2-Fuss-skew paths of semilength n 1
2, 20, 226, 2696, 33138, 415164, 5270850, 67576208, 872918690, 11343392228, 148120453538, 1941910368280, 25545250484498, 337010368660876, 4457154741645954, 59076597464830240, 784518823873380930, 10435840680299248052, 139030100339736030306, 1854730153008453738408 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
Toufik Mansour, Jose Luis Ramirez, Enumration of Fuss-skew paths, Ann. Math. Inform. 55 (2022) 125-136, table 2, l=2.
FORMULA
D-finite with recurrence 2*n *(2*n-1) *(98653*n-203080) *a(n) +(-5301667*n^3 +13746049*n^2 -3506028*n -3685230) *a(n-1) +(-1931311*n^3 +43294062*n^2 -151212227*n +137614530) *a(n-2) +(n-3)*(8016735*n^2 -44290066*n +61812586) *a(n-3) +5*(n-3) *(n-4) *(129715*n-300617) *a(n-4)=0.
MAPLE
FussSkewP := proc(l, n)
local a, j, k ;
a := 0 ;
for j from 0 to n do
a := a+sum( binomial(n, j) *binomial(j, k) *binomial(n*(l-1), n-2*j+k-1)
* 2^(n*(l-2)+2*j-k+1)*3^(k-1)*(3*(n-j)+k), k=0..j) ;
end do:
a/n ;
end proc:
seq(FussSkewP(2, n), n=1..40) ;
CROSSREFS
Cf. A026378 (1-Fuss-skew), A361965 (3-Fuss-skew)
Sequence in context: A214769 A227337 A127110 * A337856 A296660 A197898
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Mar 31 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 14 21:48 EDT 2024. Contains 375929 sequences. (Running on oeis4.)