login
A361961
Total semiperimeter of 3-Fuss-Catalan polyominoes of length 3n.
1
2, 18, 150, 1275, 11033, 96768, 857440, 7658001, 68827440, 621769016, 5640718746, 51355222113, 468976190634, 4293892636600, 39403880112240, 362321464909965, 3337465898598408, 30791007409655928, 284475382593582680, 2631594710532743340, 24372218297220901965, 225958143637966827240
OFFSET
1,1
LINKS
Toufik Mansour, I. L. Ramirez, Enumerations of polyominoes determined by Fuss-Catalan words, Australas. J. Combin. 81 (3) (2021) 447-457, Table 2.
FORMULA
Conjecture: D-finite with recurrence 3*n*(396221*n -410120) *(3*n-1) *(3*n+1) *a(n) +4*(-86981513*n^4 +457143117*n^3 -996839467*n^2 +906061905*n -279161658) *a(n-1) +32*(2*n-5) *(4*n-9) *(4*n-7) *(2282347*n -1795413)*a(n-2)=0.
MAPLE
Per := proc(s, p, n)
local i, j, a ;
a := 0 ;
for i from 0 to n-1 do
for j from 0 to n-1-i do
a := a+ (-1)^j*p^(n+1+i+(s+1)*j) *binomial(n-1+i, i)*binomial(n, j)*binomial(n+s*j, n-1-i-j)/(1-p)^(i+j) ;
end do:
end do:
expand(a/n) ;
factor(%) ;
end proc:
Per1std := proc(s, n)
local p;
Per(s, p, n) ;
diff(%, p) ;
factor(%) ;
subs(p=1, %) ;
end proc:
seq(Per1std(3, n), n=1..30) ;
CROSSREFS
Cf. A024482 (1-Fuss-Catalan), A078999 (total area), A361960 (2-Fuss-Catalan).
Sequence in context: A356623 A091170 A207319 * A091165 A363568 A191814
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Mar 31 2023
STATUS
approved