login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078999
Coefficients A_n for the s=4 tennis ball problem.
2
1, 14, 156, 1622, 16347, 161970, 1588176, 15465222, 149866020, 1447117432, 13935821924, 133921143546, 1284811863298, 12309517103724, 117803253946752, 1126336913303526, 10760609522499660, 102733711144434216, 980250448431562864, 9348504508099893272
OFFSET
0,2
LINKS
Toufik Mansour and I. L. Ramirez, Enumerations of polyominoes determined by Fuss-Catalan words, Australas. J. Combin. 81 (3) (2021) 447-457, table 1.
D. Merlini, R. Sprugnoli, and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344 (A_n for s=4).
FORMULA
Conjecture D-finite with recurrence -729*(3*n+2)*(447758283*n-407746117) *(3*n+4) *(n+1)*a(n) +216*(182049960672*n^4 +605681769096*n^3 -358290749358*n^2 -265170598015*n -38328134998)*a(n-1) +1536 *(30350980224*n^4 -947048676672*n^3 +1377152586736*n^2 -569141632910*n +54868443093)*a(n-2) -131072*(4*n-5) *(351198196*n -151260957) *(4*n-7) *(2*n-3)*a(n-3)=0. - R. J. Mathar, Mar 31 2023
MAPLE
FussArea := proc(s, n)
local a, i, j ;
a := binomial((s+1)*n, n)*n/(s*n+1) ; ;
add(j *(n-j) *binomial((s+1)*j, j) *binomial((s+1)*(n-j), n-j) /(s*j+1) /(s*(n-j)+1), j=0..n) ;
a := a+binomial(s+1, 2)*% ;
for j from 0 to n-1 do
for i from 0 to j do
i*(j-i) /(s*i+1) /(s*(j-i)+1) /(n-j)
*binomial((s+1)*i, i) *binomial((s+1)*(j-i), j-i)
*binomial((s+1)*(n-j)-2, n-1-j) ;
a := a-%*binomial(s+1, 2) ;
end do:
end do:
a ;
end proc:
seq(FussArea(3, n), n=1..30) ; # R. J. Mathar, Mar 31 2023
MATHEMATICA
FussArea[s_, n_] := Module[{a, i, j, pc}, a = Binomial[(s + 1)*n, n]*n/(s*n + 1); pc = Sum[j*(n - j)*Binomial[(s + 1)*j, j]*Binomial[(s + 1)*(n - j), n - j]/(s*j + 1)/(s*(n - j) + 1), {j, 0, n}]; a = a + Binomial[s + 1, 2]*pc; For[j = 0, j <= n - 1 , j++, For[i = 0, i <= j, i++, pc = i*(j - i)/(s*i + 1)/(s*(j - i) + 1)/(n - j)*Binomial[(s + 1)*i, i]* Binomial[(s + 1)*(j - i), j - i]*Binomial[(s + 1)*(n - j) - 2, n - 1 - j]; a = a - pc*Binomial[s + 1, 2]; ]]; a];
Table[FussArea[3, n], {n, 1, 30}] (* Jean-François Alcover, Apr 02 2023, after R. J. Mathar *)
CROSSREFS
See A049235 for more information.
Sequence in context: A263474 A154347 A001707 * A016157 A238770 A199703
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 19 2003
STATUS
approved