login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049235
Sum of balls on the lawn for the s=3 tennis ball problem.
8
0, 6, 75, 708, 5991, 47868, 369315, 2783448, 20631126, 151026498, 1094965524, 7878119760, 56330252412, 400703095284, 2838060684483, 20027058300144, 140874026880204, 988194254587242, 6915098239841331, 48285969880645908, 336521149274459979
OFFSET
0,2
LINKS
D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344 (S_n for s=3).
FORMULA
a(n) is asymptotic to c*sqrt(n)*(27/4)^n with c=2.4... - Benoit Cloitre, Jan 26 2003, c = 81*sqrt(3/Pi)/32 = 2.4735502165085321... - Vaclav Kotesovec, Feb 07 2019
G.f.: F(G^(-1)(x)) where F = 3*(2-3*t)*t*((t-1)*(3*t-1))^(-3) and G = t*(t-1)^2. - Mark van Hoeij, Oct 30 2011
D-finite with recurrence (531441*n^2 + 1594323*n + 1180980)*a(n) + (-196830*n^2 - 747954*n - 656100)*a(n + 1) + (24057*n^2 + 120285*n + 131220)*a(n + 2) + (-1809*n^2 - 16362*n - 36825)*a(n + 3) + (232*n^2 + 2798*n + 8352)*a(n + 4) + (-16*n^2 - 200*n - 624)*a(n + 5) = 0. - Robert Israel, Jun 20 2019
MAPLE
T := (n, s)->binomial(s*n, n)/((s-1)*n+1); Y := (n, s)->add(binomial(s*k, k)*binomial(s*(n-k), n-k), k=0..n); A := (n, s)->Y(n+1, s)/2-(1/2)*((2*s-3)*n+2*s-2)*T(n+1, s); S := (n, s)->(1/2)*(s*n^2+(3*s-1)*n+2*s)*T(n+1, s)-Y(n+1, s)/2;
F := 3*(2-3*t)*t*((t-1)*(3*t-1))^(-3); G := t*(t-1)^2; Ginv := RootOf(G-x, t);
ogf := series(eval(F, t=Ginv), x=0, 20);
MATHEMATICA
a[n_] := a[n] = Switch[n, 0, 0, 1, 6, 2, 75, 3, 708, 4, 5991, _, -((1/(8*(2*(n-5)^2 + 25*(n-5) + 78)))*(-(531441*(n-5)^2* a[n-5]) + 196830*(n-5)^2*a[n-4] - 24057*(n-5)^2*a[n-3] + 1809*(n-5)^2*a[n-2] - 232*(n-5)^2*a[n-1] - 1594323*(n-5)*a[n-5] + 747954*(n-5)*a[n-4] - 120285*(n-5)*a[n-3] + 16362*(n-5)*a[n-2] - 2798*(n-5)*a[n-1] - 1180980*a[n-5] + 656100*a[n-4] - 131220*a[n-3] + 36825*a[n-2] - 8352*a[n-1]))];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 02 2023, after Robert Israel *)
CROSSREFS
The four sequences T_n, Y_n, A_n, S_n for s=2 are A000108, A000302, A000346, A031970, for s=3, A001764, A006256, A075045, this sequence, for s=4, A002293, A078995, A078999, A078516.
Cf. A079486.
Sequence in context: A266574 A258270 A281797 * A129031 A234529 A139088
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 19 2003
STATUS
approved