|
|
A139088
|
|
G.f. satisfies: 2*A(x) = 5*x - x^2 - 3*Series_Reversion( A(x) ).
|
|
1
|
|
|
1, 1, 6, 75, 1338, 29610, 762228, 22038705, 700625130, 24149689410, 893830956468, 35275412216850, 1476645034008396, 65297205101393700, 3040249608438530040, 148645372286538383895, 7614315445406159805786, 407837347813468711863270
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (3/2)*(-1)^n*A139087(n) for n>2 with a(1)=a(2)=1.
|
|
EXAMPLE
|
G.f.: A(x) = x + x^2 + 6*x^3 + 75*x^4 + 1338*x^5 + 29610*x^6 +...
Series_Reversion(A(x)) = x - x^2 - 4*x^3 - 50*x^4 - 892*x^5 - ...
which equals -G(-x) where G(x) = g.f. of A139087.
|
|
PROG
|
(PARI) {a(n)=local(A=x+x^2); if(n<1, 0, for(i=3, n+1, A=A+3*polcoeff(serreverse(A+x*O(x^i)), i)*x^i); polcoeff(A, n))}
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|