login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296660
Expansion of the e.g.f. exp(-2*x)/(1-4*x).
0
1, 2, 20, 232, 3728, 74528, 1788736, 50084480, 1602703616, 57697329664, 2307893187584, 101547300251648, 4874270412083200, 253462061428318208, 14193875439985836032, 851632526399150129152, 54504481689545608331264, 3706304754889101366394880
OFFSET
0,2
COMMENTS
Binomial self-convolution of sequence A296618.
FORMULA
E.g.f.: exp(-2*x)/(1-4*x).
a(n) = Sum_{k=0..n} binomial(n,k)*4^k*k!*(-2)^(n-k).
Sum_{k=0..n} binomial(n,k)*2^(n-k)*a(k) = 4^n n!.
a(n+1)-4*(n+1)*a(n) = (-2)^(n+1).
D-finite with recurrence a(n+2)-(4*n+6)*a(n+1)-8*(n+1)*a(n) = 0.
From Vaclav Kotesovec, Dec 18 2017: (Start)
a(n) = exp(-1/2) * 4^n * Gamma(n + 1, -1/2).
a(n) ~ n! * exp(-1/2) * 4^n. (End)
MATHEMATICA
CoefficientList[Series[Exp[-2x]/(1-4x), {x, 0, 12}], x]Range[0, 12]!
Table[Sum[Binomial[n, k] 4^k k! (-2)^(n-k), {k, 0, n}], {n, 0, 12}]
PROG
(Maxima) makelist(sum(binomial(n, k)*4^k*k!*(-2)^(n-k), k, 0, n), n, 0, 12);
(PARI) x='x+O('x^99); Vec(serlaplace(exp(-2*x)/(1-4*x))) \\ Altug Alkan, Dec 18 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Dec 18 2017
STATUS
approved