login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of the e.g.f. exp(-2*x)/(1-4*x).
0

%I #19 Mar 01 2024 02:05:55

%S 1,2,20,232,3728,74528,1788736,50084480,1602703616,57697329664,

%T 2307893187584,101547300251648,4874270412083200,253462061428318208,

%U 14193875439985836032,851632526399150129152,54504481689545608331264,3706304754889101366394880

%N Expansion of the e.g.f. exp(-2*x)/(1-4*x).

%C Binomial self-convolution of sequence A296618.

%F E.g.f.: exp(-2*x)/(1-4*x).

%F a(n) = Sum_{k=0..n} binomial(n,k)*4^k*k!*(-2)^(n-k).

%F Sum_{k=0..n} binomial(n,k)*2^(n-k)*a(k) = 4^n n!.

%F a(n+1)-4*(n+1)*a(n) = (-2)^(n+1).

%F D-finite with recurrence a(n+2)-(4*n+6)*a(n+1)-8*(n+1)*a(n) = 0.

%F From _Vaclav Kotesovec_, Dec 18 2017: (Start)

%F a(n) = exp(-1/2) * 4^n * Gamma(n + 1, -1/2).

%F a(n) ~ n! * exp(-1/2) * 4^n. (End)

%t CoefficientList[Series[Exp[-2x]/(1-4x),{x,0,12}],x]Range[0,12]!

%t Table[Sum[Binomial[n, k] 4^k k! (-2)^(n-k), {k, 0, n}], {n, 0, 12}]

%o (Maxima) makelist(sum(binomial(n,k)*4^k*k!*(-2)^(n-k),k,0,n),n,0,12);

%o (PARI) x='x+O('x^99); Vec(serlaplace(exp(-2*x)/(1-4*x))) \\ _Altug Alkan_, Dec 18 2017

%Y Cf. A001907, A056545, A097820, A296618.

%K nonn

%O 0,2

%A _Emanuele Munarini_, Dec 18 2017