login
A361965
Total number of peaks in 3-Fuss-skew paths of semilength n
1
4, 96, 2672, 78848, 2400896, 74568704, 2347934464, 74675511296, 2393372833792, 77176031297536, 2500887165493248, 81372026697351168, 2656708513978580992, 86992366046604165120, 2855701159218522030080, 93950313500933860884480, 3096866628586659248603136
OFFSET
1,1
LINKS
Toufik Mansour, Jose Luis Ramirez, Enumration of Fuss-skew paths, Ann. Math. Inform. 55 (2022) 125-136, table 2, l=3.
MAPLE
FussSkewP := proc(l, n)
local a, j, k ;
a := 0 ;
for j from 0 to n do
a := a+sum( binomial(n, j) *binomial(j, k) *binomial(n*(l-1), n-2*j+k-1)
* 2^(n*(l-2)+2*j-k+1)*3^(k-1)*(3*(n-j)+k), k=0..j) ;
end do:
a/n ;
end proc:
seq(FussSkewP(3, n), n=1..40) ;
CROSSREFS
Cf. A026378 (1-Fuss-skew), A361964 (2-Fuss-skew)
Sequence in context: A267953 A206645 A267907 * A221148 A317664 A062779
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Mar 31 2023
STATUS
approved