login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361841
Expansion of 1/(1 - 9*x*(1+x)^2)^(1/3).
4
1, 3, 24, 201, 1809, 16893, 161676, 1574289, 15527052, 154662930, 1552725504, 15688410264, 159355067283, 1625899880673, 16652520666414, 171119405299005, 1763475423260049, 18219685282559559, 188664151412242368, 1957539823296458841, 20347733657193596127
OFFSET
0,2
LINKS
FORMULA
n*a(n) = 3 * ( (3*n-2)*a(n-1) + 2*(3*n-4)*a(n-2) + (3*n-6)*a(n-3) ) for n > 2.
a(n) = Sum_{k=0..n} (-9)^k * binomial(-1/3,k) * binomial(2*k,n-k).
a(n) = (-9)^n*binomial(-1/3, n)*hypergeom([1/3 - n*2/3, 2/3 - n*2/3, -n*2/3], [1/2 - n, 2/3 - n], -3/4). - Peter Luschny, Mar 27 2023
MAPLE
A361841 := n -> (-9)^n*binomial(-1/3, n)*hypergeom([1/3 - n*2/3, 2/3 - n*2/3, -n*2/3], [1/2 - n, 2/3 - n], -3/4):
seq(simplify(A361841(n)), n = 0..20); # Peter Luschny, Mar 27 2023
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(1/(1-9*x*(1+x)^2)^(1/3))
CROSSREFS
Column k=2 of A361839.
Sequence in context: A063979 A308354 A370375 * A361880 A073978 A278991
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 26 2023
STATUS
approved